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Abstract: The rapid growth of data lakes deployment for big data and analytics raises 

concerns about their sustainability due to high energy demands. While overall system-level 

consumption has been studied, little is known about the energy footprint of fundamental 

operations. This work investigates the energy usage of Create, Read, Update, Delete 

(CRUD), and Idle states in a Spark–Delta Lake environment using the EcoFloc energy usage 

profiling tool. The first step is therefore to measure the energy cost of these operations before 

suggesting future optimization to reduce the use of energy. Experiments were repeated five 

times with single-record operations to ensure consistency, measuring both CPU and RAM 

consumption.  The results show that write-heavy operations require substantially more energy 

compared to read or insert tasks, while idle consumption is negligible. These findings 

highlight that optimizing update and delete operations is essential for reducing the long-term 

energy footprint of data lakes, providing a baseline for optimizing sustainable data lake 

designs.  

 

Introduction:  

 

The rapid rise of big data has accelerated the adoption of data lakes as a cost-effective, 

scalable, and schema-on-read framework for storing and processing diverse data types. 

Unlike traditional data warehouses, data lakes can efficiently support modern analytics and 

machine learning workloads [1],[2]. However, the sustainability of such infrastructures is an 

increasing concern, particularly given the significant energy demands of large-scale data 

processing systems. These demands mainly arise from the massive utilization of CPU, RAM, 

storage (HDD/SSD), and I/O operations that support continuous data ingestion and analytics 

at scale. As climate change intensifies, the computing community faces growing pressure to 

evaluate and minimize the carbon footprint of data-intensive technologies. 

 

Prior studies on cloud platforms, distributed systems, and database operations reveal wide 

variability in power consumption and highlight inconsistent measurement practices 

[3],[4],[5]. While energy profiling tools have been applied at the application or cluster level, 

there remains a lack of detailed analysis of operation-level energy usage in data lakes. 

Existing research tends to emphasize total system consumption, offering limited insight into 

the energy cost of Create, Read, Update, and Delete (CRUD) operations [6] since they are 

fundamental operations of any database and data lakes. Most of the higher-level activities in 

data lakes like ingestion, transformation, and querying can be refined into these CRUD 

activities. 

 

This gap is critical for two reasons. First, CRUD operations represent the majority of data 

lake operations core, and their cumulative execution directly influences overall energy 
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demand. Second, long-term forecasting of data lake utilization requires an understanding of 

how these operations behave under varying workloads. There is a clear need to develop this 

line of research because existing studies often measure energy at the system or cluster level, 

but they do not isolate the cost of the CRUD operations that actually dominate workloads. In 

the absence of this knowledge, optimization strategies risk is likely to be either too broad or 

misdirected. The goal of creating a fine-grained perspective of CRUD energy will bring the 

missing detail required to design greener systems. To address this, we focus on Spark with 

Delta Lake, which enhances reliability through ACID (Atomicity, Consistency, Isolation, and 

Durability) transactions. CRUD operations become meaningful in a multi-user, distributed 

environment only when they are paired with ACID guarantees.  When it is enabled by Spark 

and Delta Lake, making it possible to execute millions of Create or Update operations 

without corruption, conflicts, or data loss. The integration of CRUD and ACID can therefore 

be said to be the foundation and the stability of data lake management. [7], [8]. 

 

Before proposing energy-saving techniques, the first step is to understand how much energy 

is consumed by the fundamental operations of a data lake. This involves monitoring the CPU 

cycles, voltage, frequency, and memory accesses that are done in CRUD actions. The 

sustainability of CRUD operations is a process that should be measured through close 

observation of the hardware resources that it consumes. Some of generic monitoring tools 

report a total system consumption, but do not distinguish between the cost of one process or 

query. To overcome this, we apply EcoFloc [16] a monitoring system designed to measure 

CPU and RAM energy per-process energy tracking in Linux, making it suitable for each 

CRUD operations process profiling. It can provide CPU and RAM-level measurements at 

process granularity.  

 

In this study, EcoFloc was selected over alternatives such as Scaphandre [17] because it 

allows direct monitoring of individual processes, a feature that is highly relevant for CRUD-

level profiling in containerized environments. This study establishes a methodological basis 

for evaluating the sustainability of data lake operations and provides empirical evidence to 

guide greener system design. 

 

Literature Review:  

 

Data lakes have emerged as a preferred alternative to traditional data warehouses because of 

their flexibility, scalability, and ability to handle diverse data types. Tools such as Apache 

Spark have further accelerated adoption by enabling efficient processing across large-scale 

platforms [1], [2]. Profiling studies have also been conducted at system and application 

levels, often focusing on cluster behavior or database workloads [3], [4], [5]. CRUD 

operations have been widely recognized as the foundation of database systems [6], but 

previous studies have largely examined them from a performance perspective rather than an 

energy footprint. These studies suggest the hypothesis assumes that the cost of energy of all 

CRUD operations is not the same. The overheads involved in reading and inserting individual 

records ought to be light, but those of updating and deleting must be heavier, since they 

require scanning of the data, rewriting it, and ensuring data consistency. Meanwhile, Idle is 

expected to serve only as a baseline reference. 

Other studies have addressed ingestion management in data lakes to better handle variety and 

continuous data streams [7] and knowledge graph technologies have been proposed to 

empower data lakes with semantic insights [8]. Alongside this growth, the Lakehouse concept 

has combined the strengths of both data lakes and warehouses, supporting hybrid analytics 

and machine learning integration [9], [10]. While these advances improve performance and 
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usability, they raise growing concerns about energy efficiency. Prior research has introduced 

green data lake models [11], energy-aware scheduling in Spark [12], and query optimization 

for energy-efficient databases [13].  

 

Although earlier work highlights the importance of sustainable data management and some 

attempts at energy profiling exist, no prior study has provided precise monitoring of CRUD 

operations in a data lake environment under controlled workloads, nor extended the results 

into long-term (yearly) forecasting. This gap motivates the present research. In order to 

design improvements, Energy cannot be optimized without first identifying its sources and 

patterns of use. Understanding the amount of energy consumed, the timing of its demand, and 

the reasons behind it is a necessary foundation before proposing solutions for greener data 

lake operations. 

 

EcoFloc: Energy Measuring System Tool for Linux:  

 

To address the lack of precise energy profiling at the operation level in data lakes, this study 

employs EcoFloc, an open-source tool for monitoring energy consumption in GNU/Linux 

environments [16]. Developed by the R&D laboratory of Technopôle Domolandes with the 

support of LIUPPA Research Lab of UPPA Université de Pau et des Pays de l’Adour and 

Université de Toulouse, EcoFloc tracks energy use across hardware components including 

CPU, RAM, GPU, storage (HD), and Network Interface Controllers (NICs). Its modular 

design allows extensibility and process-level granularity, enabling researchers to isolate the 

energy cost of specific applications—an ability highly relevant for studying CRUD 

operations in Spark–Delta Lake environments. By capturing precise CPU and RAM usage, 

EcoFloc provides the basis for forecasting the long-term energy footprint of data lake 

workloads. It measures energy by sampling hardware performance data such as CPU 

frequency, voltage, and usage time, then applying a power model using the following 

equation: 

 

Ԝ = P×C×V2×F 

 

P (Utilization): the percentage of CPU time allocated to the process. Higher utilization 

means the CPU spends more time actively executing instructions. 

C (Capacitance): a hardware property of the processor that reflects how much electrical 

charge the circuits store and switch during operation. 

V (Voltage): the operating voltage of the CPU cores. Power consumption grows 

quadratically with voltage (small increases in V cause large increases in W). 

F (Frequency): the operating clock speed of the CPU cores. Higher frequencies result in 

faster processing but also greater energy use. 

 

In practice, power increases when the CPU is active for longer periods, operates at higher 

voltage, or runs at higher frequency. EcoFloc applies this model to estimate CPU power at 

each sampling interval, reporting both instantaneous power (watts) and accumulated energy 

(joules). CPU time is defined as the sum of user and system times, which reflects actual 

compute work and excludes idle overheads. 

 

EcoFloc measures RAM energy by monitoring the number of memory operations performed 

by the target process through the Linux perf tool. There are two event types, memory reads 
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(mem-loads) and memory writes (mem-stores). Each operation is charged with a fixed energy 

cost depending on hardware characterization 6.6 nJ/load and 8.7 nJ/store, and the following 

estimation model is obtained: 

 

ĒRAM= (store ×8.7 nJ) + (loads×6.6 nJ) 

 

Through the multiplication of event counts by these coefficients, EcoFloc approximates the 

total energy consumption of RAM in joules and subsequently calculates the average power in 

watts by dividing this value by the observation interval. In contrast to the CPU, which 

provides real execution time through user and system counters, RAM lacks a concept of 

"active time," as it solely reacts to access requests and perpetually consumes refresh power. 

Therefore, within the context of this study, the processing time for RAM is delineated as the 

fixed measurement window (-t) outlined in EcoFloc, during which memory access events are 

recorded. 

 

EcoFloc reports both average power (watts) and total energy (joules), providing a clear 

picture of how energy is consumed over time and how much is required to complete a task. 

These metrics can be captured at the process level using identifiers (PIDs), which is 

especially useful when profiling CRUD operations in a data lake. EcoFloc can be used via a 

command-line interface (CLI) for automated benchmarking or through a graphical interface 

(GUI) for easier result visualization. 

 

 
Figure 1. EcoFloc command-line usage for energy profiling 

 

For example, EcoFloc can profile the CPU energy usage of a process with a specified process 

identifier (PID). The following command measures the CPU consumption of the process with 

PID 203 for 10 seconds at 1000 ms intervals, exporting the results to a CSV file: 

 
. /ecofloc --cpu -p 203 -i 1000 -t 10 -f 

 

The output from this command is reported as: 

 
***************************** 

/ECOFLOC_CPU_PID_203 

***************************** 

Average Power (CPU): 0.47 Watts 

Total Energy (CPU): 4.72 Joules 

***************************** 
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This example demonstrates that EcoFloc can also provide the average power in watts and the 

total energy in joules, which are central measurements to this experiment to assess CRUD 

and Idle operations within the data lake setting. 

 

Although EcoFloc can monitor CPU, RAM, GPU, storage, and network devices, this study 

focuses on CPU and RAM, as they are the dominant contributors to Spark–Delta Lake 

workloads. Concentrating on these components provides a clearer baseline for understanding 

the energy cost of CRUD operations. EcoFloc results were then used to identify the most 

energy-intensive operations and to forecast long-term consumption at daily, weekly, monthly, 

and yearly scales. While EcoFloc offers reliable approximations based on kernel-level 

counters, the results remain estimates, with future extensions expected to improve accuracy 

and hardware coverage [1]. 

 

Experiments 

 

The objective of this experiment is to measure and forecast the energy consumption of 

common data lake operations Create, Read, Update, and Delete (CRUD). An additional Idle 

state was included as a baseline for comparison. By isolating these tasks, the study aimed to 

provide a controlled view of how different workloads contribute to the overall energy 

footprint of data lakes. To achieve this, we deployed a Spark–Delta Lake environment inside 

a Docker container, ensuring reproducibility and minimizing side effects from unrelated 

system processes. 

 

The experiments were conducted in a controlled Spark–Delta Lake environment running 

inside a Docker container. The underlying hardware was configured as a server, with 

specifications summarized in Table 1. This setup provided sufficient computational resources 

while allowing precise tracking of CPU and RAM usage. 

 

Table 1. Experimental Server Specifications 

 

Feature Specification 

System Model B660M DDR4 

Processor Intel Core i7-12700F (12th Gen) 

RAM 64GiB DDR4 @ 2400 MHz 

Cache 25MiB L3 Cache 

Storage 1TB NVMe 

Architecture x86_64 (64-bit) 

Operating Modes 32-bit, 64-bit 

Operating System Linux Mint 21.2 

Containerization Docker with Spark and Delta Lake 
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Energy measurements were performed using EcoFloc, an open-source profiling tool executed 

in parallel with query processing. For each operation, EcoFloc was executed with CPU and 

RAM modules enabled, sampling at 1,000 ms intervals over a 10-second observation 

window. Because The 10 s observation window was chosen as it was necessary to balance 

accuracy and stability. Smaller intervals can only get noise, whereas longer intervals can 

expose more background process risk. Setting the period to 10 seconds allows to make all of 

each CRUD measurement is representative while minimizing side-effects. CPU energy was 

estimated from the time the processor spent in user and system modes, representing its active 

workload by the Linux time utility, while RAM energy was instead measured continuously 

across the same interval, as memory consumes energy on every access operation and lacks a 

discrete notion of processing time, regardless of active CPU time. 

Each CRUD operation was executed five times, with queries designed to affect only a single 

row in the Delta Lake table to maintain fine-grained control. Repetition was required in this 

experiment to improve accuracy. This study performed multiple repetitions of all the 

operations to make sure that the observed values were steady, representative, and not the 

result of a single measurement. The Create operation inserted new rows, Read retrieved 

existing rows with filters, Update modified selected fields, and Delete removed specific rows. 

The Idle baseline was measured by keeping the Spark–Delta Lake environment active 

without executing any query. Results from the five repetitions were averaged to obtain 

reliable daily energy values, which were later extrapolated to weekly, monthly, and yearly 

forecasts. 

During each execution, the following values were recorded: 

 Average power consumption (W) 

 Total energy usage (J) 

 Processing time (s).  

CPU and RAM processing times were defined distinctly in this research, as each of the 

subsystems presents performance data in a variant form. In case of CPU measurements, 

Linux time utility was implemented with the EcoFloc. EcoFloc shows the real (wall-clock 

time), user (time in user space), and sys (time in kernel space) in the output results. 

As an example: 

 
***************************** 

/ECOFLOC_CPU_COMM_java 

***************************** 

Average Power: 18.26 Watts 

Total Energy: 146.12 Joules 

***************************** 

 

real   0m13.064s 

user   0m1.311s 

sys    0m2.238s 

 

Average daily energy consumption (Ēdaily) was obtained from five repeated executions for 

each CRUD and Idle operation; the values were used to forecast longer-term consumption. 

The forecasting was performed by simple multiplication of the daily average by standard time 

periods, as shown below: 

 

 

Eweekly = Ēdaily × 7 
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Emonthly = Ēdaily × 30 

Eyearly = Ēdaily × 365 

 

Experiment Results: 

 

The outcomes of the measurements are summarized in Table 2, which presents the average 

CPU and RAM energy consumption, along with processing time, for each CRUD operation 

and the Idle state. These results were obtained by averaging five independent executions per 

operation to minimize variability and ensure reliability. 

 

Table 2. Daily Energy Consumption and Time for (CRUD & IDLE) Operations in Data 

Lake 

 

 

The finding as in Table 2 shows that Delete (3.17 J) and Update (3.53 J) consumed the most 

CPU energy whereas Create (0.45 J) and Read (0.05 J) required much less. RAM energy 

followed a similar trend, with Update (46.14 J) and Delete (30.86 J) slightly higher than 

Create (8.77 J), whereas Read used almost no RAM energy (0.18 J). Idle does not perform 

any computation, but EcoFloc measures energy within a defined 10-second observation. That 

is why an average processing time is also present with Idle, although it is just a measure 

interval. 

 

Overall, these results indicate that write-intensive operations (Update and Delete) require 

substantially more resources compared to read or insert tasks. Read remains the most power-

efficient operation, while Create shows moderate energy demand. Idle consumption is 

minimal, serving as a baseline. These finding confirm that heavy write operations dominate 

the energy footprint in data lake workloads. 

 

These findings suggest that energy efficiency can be improved by batching updates and 

deletes, applying caching or indexing to reduce redundant writes, and scheduling write-heavy 

tasks during low-load periods to minimize energy spikes. 

 

The following chart, Figure 3, illustrates the projected energy impact of the CPU operations 

under conditions of CRUD and Idle over time (daily, weekly, monthly and yearly). In this 

Operation 

Type 
CPU RAM 

 

Average 

Power 

(W) 

Average 

Total 

Energy (J) 

Average 

Processing 

Time (sec) 

Average 

Power 

(W) 

Average 

Total 

Energy (J) 

Observation 

Window (sec) 

CREATE 0.044 0.45 
0.016 

0.876 8.77 10 

READ 0.006 0.05 
0.0164 

0.016 0.18 10 

UPDATE 0.35 3.53 
0.0178 

4.61 46.14 10 

DELETE 0.318 3.17 
0.0168 

3.08 30.86 10 

IDLE 0.00 0.02 10 0.00 0.02 10 
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study, the energy footprint of Delete and Update operations are the most energy intensive, 

while Read is the most efficient as per results. Create falls in between, and Idle remains 

negligible. 

 

 

 
Figure 3. Forecasted CPU Energy Footprint for CRUD and Idle Operations (Daily, 

Weekly, Monthly, Yearly) 

 

On a yearly basis, Update reaches (1,288.45 J) and Delete (1,157 J), far exceeding Create 

(164.25 J) and Read (18.25 J). Idle remains minimal at only 7.3 J per year. These results 

prove that, over time, write-heavy operations dominate CPU energy usage, while Read 

continues to be the most sustainable operation. 

 

The following chart, Figure 4, shows the measured daily energy consumption of RAM and 

forecasted RAM energy footprint under CRUD and Idle operations. Daily energy 

consumption of Update recorded the highest RAM energy consumption at (46.14 J), followed 

by Delete (30.86 J) and Create (8.77 J), while Read used only 0.18 J. Idle consumption 

remained negligible at 0.02 J. These results highlight Spark’s memory-intensive behavior, 

particularly for write operations. 
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Figure 4. Forecasted RAM Energy Footprint for CRUD and Idle Operations (Daily, 

Weekly, Monthly, Yearly) 

 

Overall, breaking down the yearly basis, Update consumes (16,841 J), Delete (11,045) and 

Create (3201.05 J). Read is relatively low, at (65.70 J) and Idle is nearly zero, at 7.3 J/year. 

These findings indicate that memory activity is the largest contributor to Spark’s long run 

energy footprint with write-intensive operations dominating most of the RAM usage.  

 

Discussion of Results and Analysis:  

 

The experimental results show a clear distinction between read-oriented and write-oriented 

operations in terms of energy demand. These findings are consistent with established 

principles of database systems and transactional data lake architectures. The higher energy 

cost of Update and Delete operations is an expected outcome, and the root cause lies in Delta 

Lake's "copy-on-write" mechanism. When performing an Update or Delete, Spark must read 

the existing data files, apply the changes in memory, write out entirely new data files, and 

then update the transaction log to invalidate the old files. This process of reading, rewriting, 

and ensuring transactional consistency is inherently more demanding on both CPU and RAM 

compared to a simple Create (which appends data) or Read (which streams data). 

 

Therefore, the primary contribution of this work is not the discovery that write-heavy 

operations are more expensive, but rather the empirical quantification of this cost on a 

modern Spark–Delta Lake stack. By providing a precise energy baseline for each CRUD 

operation using EcoFloc, this study establishes the necessary foundation for developing and 

evaluating future energy-aware optimization strategies tailored to these specific 

environments. 

 

On the daily energy consumption of CPU, Update consumed an average of 3.53 J, and Delete 

consumed 3.17 J, compared to only 0.45 J for Create and 0.05 J for Read. This means that 

Update and Delete required more than seven times the energy of Create and over sixty times 
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that of Read. Similarly, RAM results confirm the imbalance that Update consumed 46.14 J 

and Delete 30.86 J, while Create used 8.77 J and Read almost none at 0.18 J. Idle remained 

negligible on both CPU (0.02 J) and RAM (0.02 J), validating its role as a baseline reference. 

 

When extended to long-term forecasts, the same trend is magnified. For CPU energy, Update 

reached 1,288 J per year, and Delete 1,157 J, compared to Create at 164 J and Read at 18 J. 

RAM forecasting further emphasizes the memory-intensive nature of Spark workloads, with 

Update climbed to 16,841 J per year, Delete to 11,045 J, and Create to 3,201 J, while Read 

was limited to 65.70 J and Idle to 7 J. 

 

These results provide strong evidence supporting the hypothesis drawn from earlier studies 

[12], [13], [15] that write-heavy operations are the most energy-demanding. The high costs of 

Update and Delete can be attributed to data rewriting and consistency enforcement, while the 

low costs of Read confirm its efficiency. The moderate values of Create indicate that insert 

operations require more resources than reads but remain less demanding than updates or 

deletions. The evidence therefore shows that the energy footprint of data lakes is dominated 

by write-intensive operations and has the largest impact on long-term sustainability. 

 

Conclusions and Future Work:  
 

In this study, the energy consumption and processing time of Create, Read, Update, Delete, 

and Idle operations in a Spark–Delta Lake environment were measured using EcoFloc. Each 

operation was executed with a single record, repeated five times, and the averages were taken 

for analysis. The results clearly indicate that Update and Delete are the most energy-

intensive, while Read is the most efficient and Create falls in between. Idle contributes almost 

no measurable energy, serving as a baseline reference. 

 

The forecasting further emphasizes that write-heavy operations dominate long-term energy 

costs. On the CPU, yearly energy usage reaches 1,288 J for Delete and 1,157 J for Update, 

compared to only 164 J for Create and 18 J for Read. For RAM, yearly energy climbs to 

16,841 J for Update, 11,045 J for Delete, and 3,201 J for Create, while Read remains at just 

66 J and Idle at 7 J. These RAM values are derived from a fixed 10-second observation 

window for each operation, ensuring comparability across CRUD and Idle. 

 

Overall, the results present a strong foundation to assess the sustainability of the data lake 

operations. It verifies that most long-term energy consumption is attributed to write-intensive 

operations hence the need to prioritize optimization of such activities in order to achieve a 

greener system design. In Future research, this study will be plan to approach bigger data 

sets, batch workloads, and multi-node clusters to capture more realistic usage scenarios. 

Additional profiling of GPU and storage components will also be explored, as well as the 

integration of energy-aware scheduling policies, to provide a more comprehensive 

assessment of sustainable data lake management. 
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