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Abstract: The rapid growth of data lakes deployment for big data and analytics raises
concerns about their sustainability due to high energy demands. While overall system-level
consumption has been studied, little is known about the energy footprint of fundamental
operations. This work investigates the energy usage of Create, Read, Update, Delete
(CRUD), and Idle states in a Spark—Delta Lake environment using the EcoFloc energy usage
profiling tool. The first step is therefore to measure the energy cost of these operations before
suggesting future optimization to reduce the use of energy. Experiments were repeated five
times with single-record operations to ensure consistency, measuring both CPU and RAM
consumption. The results show that write-heavy operations require substantially more energy
compared to read or insert tasks, while idle consumption is negligible. These findings
highlight that optimizing update and delete operations is essential for reducing the long-term
energy footprint of data lakes, providing a baseline for optimizing sustainable data lake
designs.

Introduction:

The rapid rise of big data has accelerated the adoption of data lakes as a cost-effective,
scalable, and schema-on-read framework for storing and processing diverse data types.
Unlike traditional data warehouses, data lakes can efficiently support modern analytics and
machine learning workloads [1],[2]. However, the sustainability of such infrastructures is an
increasing concern, particularly given the significant energy demands of large-scale data
processing systems. These demands mainly arise from the massive utilization of CPU, RAM,
storage (HDD/SSD), and I/O operations that support continuous data ingestion and analytics
at scale. As climate change intensifies, the computing community faces growing pressure to
evaluate and minimize the carbon footprint of data-intensive technologies.

Prior studies on cloud platforms, distributed systems, and database operations reveal wide
variability in power consumption and highlight inconsistent measurement practices
[3].[4].[5]. While energy profiling tools have been applied at the application or cluster level,
there remains a lack of detailed analysis of operation-level energy usage in data lakes.
Existing research tends to emphasize total system consumption, offering limited insight into
the energy cost of Create, Read, Update, and Delete (CRUD) operations [6] since they are
fundamental operations of any database and data lakes. Most of the higher-level activities in
data lakes like ingestion, transformation, and querying can be refined into these CRUD
activities.

This gap is critical for two reasons. First, CRUD operations represent the majority of data
lake operations core, and their cumulative execution directly influences overall energy
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demand. Second, long-term forecasting of data lake utilization requires an understanding of
how these operations behave under varying workloads. There is a clear need to develop this
line of research because existing studies often measure energy at the system or cluster level,
but they do not isolate the cost of the CRUD operations that actually dominate workloads. In
the absence of this knowledge, optimization strategies risk is likely to be either too broad or
misdirected. The goal of creating a fine-grained perspective of CRUD energy will bring the
missing detail required to design greener systems. To address this, we focus on Spark with
Delta Lake, which enhances reliability through ACID (Atomicity, Consistency, Isolation, and
Durability) transactions. CRUD operations become meaningful in a multi-user, distributed
environment only when they are paired with ACID guarantees. When it is enabled by Spark
and Delta Lake, making it possible to execute millions of Create or Update operations
without corruption, conflicts, or data loss. The integration of CRUD and ACID can therefore
be said to be the foundation and the stability of data lake management. [7], [8].

Before proposing energy-saving techniques, the first step is to understand how much energy
is consumed by the fundamental operations of a data lake. This involves monitoring the CPU
cycles, voltage, frequency, and memory accesses that are done in CRUD actions. The
sustainability of CRUD operations is a process that should be measured through close
observation of the hardware resources that it consumes. Some of generic monitoring tools
report a total system consumption, but do not distinguish between the cost of one process or
query. To overcome this, we apply EcoFloc [16] a monitoring system designed to measure
CPU and RAM energy per-process energy tracking in Linux, making it suitable for each
CRUD operations process profiling. It can provide CPU and RAM-level measurements at
process granularity.

In this study, EcoFloc was selected over alternatives such as Scaphandre [17] because it
allows direct monitoring of individual processes, a feature that is highly relevant for CRUD-
level profiling in containerized environments. This study establishes a methodological basis
for evaluating the sustainability of data lake operations and provides empirical evidence to
guide greener system design.

Literature Review:

Data lakes have emerged as a preferred alternative to traditional data warehouses because of
their flexibility, scalability, and ability to handle diverse data types. Tools such as Apache
Spark have further accelerated adoption by enabling efficient processing across large-scale
platforms [1], [2]. Profiling studies have also been conducted at system and application
levels, often focusing on cluster behavior or database workloads [3], [4], [5]. CRUD
operations have been widely recognized as the foundation of database systems [6], but
previous studies have largely examined them from a performance perspective rather than an
energy footprint. These studies suggest the hypothesis assumes that the cost of energy of all
CRUD operations is not the same. The overheads involved in reading and inserting individual
records ought to be light, but those of updating and deleting must be heavier, since they
require scanning of the data, rewriting it, and ensuring data consistency. Meanwhile, Idle is
expected to serve only as a baseline reference.

Other studies have addressed ingestion management in data lakes to better handle variety and
continuous data streams [7] and knowledge graph technologies have been proposed to
empower data lakes with semantic insights [8]. Alongside this growth, the Lakehouse concept
has combined the strengths of both data lakes and warehouses, supporting hybrid analytics
and machine learning integration [9], [10]. While these advances improve performance and
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usability, they raise growing concerns about energy efficiency. Prior research has introduced
green data lake models [11], energy-aware scheduling in Spark [12], and query optimization
for energy-efficient databases [13].

Although earlier work highlights the importance of sustainable data management and some
attempts at energy profiling exist, no prior study has provided precise monitoring of CRUD
operations in a data lake environment under controlled workloads, nor extended the results
into long-term (yearly) forecasting. This gap motivates the present research. In order to
design improvements, Energy cannot be optimized without first identifying its sources and
patterns of use. Understanding the amount of energy consumed, the timing of its demand, and
the reasons behind it is a necessary foundation before proposing solutions for greener data
lake operations.

EcoFloc: Energy Measuring System Tool for Linux:

To address the lack of precise energy profiling at the operation level in data lakes, this study
employs EcoFloc, an open-source tool for monitoring energy consumption in GNU/Linux
environments [16]. Developed by the R&D laboratory of Technopble Domolandes with the
support of LIUPPA Research Lab of UPPA Université de Pau et des Pays de 1’Adour and
Université de Toulouse, EcoFloc tracks energy use across hardware components including
CPU, RAM, GPU, storage (HD), and Network Interface Controllers (NICs). Its modular
design allows extensibility and process-level granularity, enabling researchers to isolate the
energy cost of specific applications—an ability highly relevant for studying CRUD
operations in Spark—Delta Lake environments. By capturing precise CPU and RAM usage,
EcoFloc provides the basis for forecasting the long-term energy footprint of data lake
workloads. It measures energy by sampling hardware performance data such as CPU
frequency, voltage, and usage time, then applying a power model using the following
equation:

W = PxCxV?xF

P (Utilization): the percentage of CPU time allocated to the process. Higher utilization
means the CPU spends more time actively executing instructions.

C (Capacitance): a hardware property of the processor that reflects how much electrical
charge the circuits store and switch during operation.

V (Voltage): the operating voltage of the CPU cores. Power consumption grows
quadratically with voltage (small increases in V cause large increases in W).

F (Frequency): the operating clock speed of the CPU cores. Higher frequencies result in
faster processing but also greater energy use.

In practice, power increases when the CPU is active for longer periods, operates at higher
voltage, or runs at higher frequency. EcoFloc applies this model to estimate CPU power at
each sampling interval, reporting both instantaneous power (watts) and accumulated energy
(joules). CPU time is defined as the sum of user and system times, which reflects actual
compute work and excludes idle overheads.

EcoFloc measures RAM energy by monitoring the number of memory operations performed
by the target process through the Linux perf tool. There are two event types, memory reads
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(mem-loads) and memory writes (mem-stores). Each operation is charged with a fixed energy
cost depending on hardware characterization 6.6 nJ/load and 8.7 nJ/store, and the following
estimation model is obtained:

Eram= (store x8.7 nJ) + (loadsx6.6 nJ)

Through the multiplication of event counts by these coefficients, EcoFloc approximates the
total energy consumption of RAM in joules and subsequently calculates the average power in
watts by dividing this value by the observation interval. In contrast to the CPU, which
provides real execution time through user and system counters, RAM lacks a concept of
"active time," as it solely reacts to access requests and perpetually consumes refresh power.
Therefore, within the context of this study, the processing time for RAM is delineated as the
fixed measurement window (-t) outlined in EcoFloc, during which memory access events are
recorded.

EcoFloc reports both average power (watts) and total energy (joules), providing a clear
picture of how energy is consumed over time and how much is required to complete a task.
These metrics can be captured at the process level using identifiers (PIDs), which is
especially useful when profiling CRUD operations in a data lake. EcoFloc can be used via a
command-line interface (CLI) for automated benchmarking or through a graphical interface
(GUI) for easier result visualization.

Process ID (PID) Export Mode

ecofloc --cpu -p 20300 -i 1000 -t 10 -t /home/user/

hardware component Interval time

ecofloc --ram -n java -i 1000 -t 5 -d

Process Name Dynamic Mode

Figure 1. EcoFloc command-line usage for energy profiling

For example, EcoFloc can profile the CPU energy usage of a process with a specified process
identifier (PID). The following command measures the CPU consumption of the process with
PID 203 for 10 seconds at 1000 ms intervals, exporting the results to a CSV file:

/ecofloc --cpu -p 203 -i 1000 -t 10 -f

The output from this command is reported as:

hhkkhkkkkhkkkhkhkkkhkkkkhkkkhkhkkkkkkx

/ECOFLOC_CPU_PID 203
kAkhkkhkhkkhkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkhkkhkhkkhkkkkhkkkk
Average Power (CPU): 0.47 Watts

Total Energy (CPU): 4.72 Joules
hhkkhkkkkhkkkhkhkkkhkkkkhkkhkkhkhkkkkkkx
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This example demonstrates that EcoFloc can also provide the average power in watts and the
total energy in joules, which are central measurements to this experiment to assess CRUD
and ldle operations within the data lake setting.

Although EcoFloc can monitor CPU, RAM, GPU, storage, and network devices, this study
focuses on CPU and RAM, as they are the dominant contributors to Spark—Delta Lake
workloads. Concentrating on these components provides a clearer baseline for understanding
the energy cost of CRUD operations. EcoFloc results were then used to identify the most
energy-intensive operations and to forecast long-term consumption at daily, weekly, monthly,
and yearly scales. While EcoFloc offers reliable approximations based on kernel-level
counters, the results remain estimates, with future extensions expected to improve accuracy
and hardware coverage [1].

Experiments

The objective of this experiment is to measure and forecast the energy consumption of
common data lake operations Create, Read, Update, and Delete (CRUD). An additional Idle
state was included as a baseline for comparison. By isolating these tasks, the study aimed to
provide a controlled view of how different workloads contribute to the overall energy
footprint of data lakes. To achieve this, we deployed a Spark—Delta Lake environment inside
a Docker container, ensuring reproducibility and minimizing side effects from unrelated
system processes.

The experiments were conducted in a controlled Spark—Delta Lake environment running
inside a Docker container. The underlying hardware was configured as a server, with
specifications summarized in Table 1. This setup provided sufficient computational resources
while allowing precise tracking of CPU and RAM usage.

Table 1. Experimental Server Specifications

Feature Specification
System Model B660M DDR4
Processor Intel Core i7-12700F (12" Gen)
RAM 64GiB DDR4 @ 2400 MHz
Cache 25MiB L3 Cache
Storage 1TB NVMe
Architecture x86_64 (64-Dbit)
Operating Modes 32-bit, 64-hit
Operating System Linux Mint 21.2
Containerization Docker with Spark and Delta Lake

© The 51% International Congress on Science, Technology and Technology-based Innovation (STT 51)



Energy measurements were performed using EcoFloc, an open-source profiling tool executed
in parallel with query processing. For each operation, EcoFloc was executed with CPU and
RAM modules enabled, sampling at 1,000 ms intervals over a 10-second observation
window. Because The 10 s observation window was chosen as it was necessary to balance
accuracy and stability. Smaller intervals can only get noise, whereas longer intervals can
expose more background process risk. Setting the period to 10 seconds allows to make all of
each CRUD measurement is representative while minimizing side-effects. CPU energy was
estimated from the time the processor spent in user and system modes, representing its active
workload by the Linux time utility, while RAM energy was instead measured continuously
across the same interval, as memory consumes energy on every access operation and lacks a
discrete notion of processing time, regardless of active CPU time.
Each CRUD operation was executed five times, with queries designed to affect only a single
row in the Delta Lake table to maintain fine-grained control. Repetition was required in this
experiment to improve accuracy. This study performed multiple repetitions of all the
operations to make sure that the observed values were steady, representative, and not the
result of a single measurement. The Create operation inserted new rows, Read retrieved
existing rows with filters, Update modified selected fields, and Delete removed specific rows.
The Idle baseline was measured by keeping the Spark—Delta Lake environment active
without executing any query. Results from the five repetitions were averaged to obtain
reliable daily energy values, which were later extrapolated to weekly, monthly, and yearly
forecasts.
During each execution, the following values were recorded:

e Average power consumption (W)

e Total energy usage (J)

e Processing time (5).
CPU and RAM processing times were defined distinctly in this research, as each of the
subsystems presents performance data in a variant form. In case of CPU measurements,
Linux time utility was implemented with the EcoFloc. EcoFloc shows the real (wall-clock
time), user (time in user space), and sys (time in kernel space) in the output results.
As an example:

R S d A db db b b b b b S S 2 A dh db Ib b b b S i S 2 db g ¢

/ECOFLOC CPU COMM java
khkkhkkhhkhkkhkkhhkhkkhkhhkhkkhhhkhkhkhhrkhkkhhrxkk*k
Average Power: 18.26 Watts
Total Energy: 146.12 Joules

R S e S Ih b b b b b b S 2 db Sb Ib Ib b b b b b i b S g4

real Oml13.064s
user Oml.311s
SySs Om2.238s

Average daily energy consumption (Edaily) Was obtained from five repeated executions for
each CRUD and Idle operation; the values were used to forecast longer-term consumption.
The forecasting was performed by simple multiplication of the daily average by standard time
periods, as shown below:

Eweekly = Edaity X 7
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Emonthly = Edaity X 30
Eyearly = Edaily X 365

Experiment Results:

The outcomes of the measurements are summarized in Table 2, which presents the average
CPU and RAM energy consumption, along with processing time, for each CRUD operation
and the ldle state. These results were obtained by averaging five independent executions per
operation to minimize variability and ensure reliability.

Table 2. Daily Energy Consumption and Time for (CRUD & IDLE) Operations in Data
Lake

Operation

CPU RAM
Type
Average Average Average Average Average Observation
Power Total Processing Power Total Window (sec)
(W) Energy (J) Time (sec) (W) Energy (J)
CREATE  0.044 0.45 0.016 0.876 8.77 10
READ  0.006 0.05 0.0164 0.016 0.18 10
UPDATE  0.35 3.53 0.0178 4.61 46.14 10
DELETE 0.318 3.17 0.0168 3.08 30.86 10
IDLE 0.00 0.02 10 0.00 0.02 10

The finding as in Table 2 shows that Delete (3.17 J) and Update (3.53 J) consumed the most
CPU energy whereas Create (0.45 J) and Read (0.05 J) required much less. RAM energy
followed a similar trend, with Update (46.14 J) and Delete (30.86 J) slightly higher than
Create (8.77 J), whereas Read used almost no RAM energy (0.18 J). Idle does not perform
any computation, but EcoFloc measures energy within a defined 10-second observation. That
is why an average processing time is also present with Idle, although it is just a measure
interval.

Overall, these results indicate that write-intensive operations (Update and Delete) require
substantially more resources compared to read or insert tasks. Read remains the most power-
efficient operation, while Create shows moderate energy demand. ldle consumption is
minimal, serving as a baseline. These finding confirm that heavy write operations dominate
the energy footprint in data lake workloads.

These findings suggest that energy efficiency can be improved by batching updates and
deletes, applying caching or indexing to reduce redundant writes, and scheduling write-heavy
tasks during low-load periods to minimize energy spikes.

The following chart, Figure 3, illustrates the projected energy impact of the CPU operations
under conditions of CRUD and Idle over time (daily, weekly, monthly and yearly). In this
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study, the energy footprint of Delete and Update operations are the most energy intensive,
while Read is the most efficient as per results. Create falls in between, and Idle remains
negligible.

Energy Footprint Forecasting Chart for CPU

Oidle Create Read Update [ Delete

1400 1,288.45
1200 }157
1000
= 3.17 22.19 95
'.}-,.‘: 800
5 24.71 105.90
S
= 600
= 3.53 3.15 13.50
= 0.45
400 0.35
0.05 1o
500 ' 164.25
0.02 0.6 7.3| [8.25
0 — —— Oﬁ =3 — D — L]
Daily Weekly Monthly Yearly

Figure 3. Forecasted CPU Energy Footprint for CRUD and Idle Operations (Daily,
Weekly, Monthly, Yearly)

On a yearly basis, Update reaches (1,288.45 J) and Delete (1,157 J), far exceeding Create
(164.25 J) and Read (18.25 J). Idle remains minimal at only 7.3 J per year. These results
prove that, over time, write-heavy operations dominate CPU energy usage, while Read
continues to be the most sustainable operation.

The following chart, Figure 4, shows the measured daily energy consumption of RAM and
forecasted RAM energy footprint under CRUD and Idle operations. Daily energy
consumption of Update recorded the highest RAM energy consumption at (46.14 J), followed
by Delete (30.86 J) and Create (8.77 J), while Read used only 0.18 J. Idle consumption
remained negligible at 0.02 J. These results highlight Spark’s memory-intensive behavior,
particularly for write operations.
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Energy Footprint Forecasting Chart for RAM
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Figure 4. Forecasted RAM Energy Footprint for CRUD and Idle Operations (Daily,
Weekly, Monthly, Yearly)

Overall, breaking down the yearly basis, Update consumes (16,841 J), Delete (11,045) and
Create (3201.05 J). Read is relatively low, at (65.70 J) and Idle is nearly zero, at 7.3 J/year.
These findings indicate that memory activity is the largest contributor to Spark’s long run
energy footprint with write-intensive operations dominating most of the RAM usage.

Discussion of Results and Analysis:

The experimental results show a clear distinction between read-oriented and write-oriented
operations in terms of energy demand. These findings are consistent with established
principles of database systems and transactional data lake architectures. The higher energy
cost of Update and Delete operations is an expected outcome, and the root cause lies in Delta
Lake's "copy-on-write" mechanism. When performing an Update or Delete, Spark must read
the existing data files, apply the changes in memory, write out entirely new data files, and
then update the transaction log to invalidate the old files. This process of reading, rewriting,
and ensuring transactional consistency is inherently more demanding on both CPU and RAM
compared to a simple Create (which appends data) or Read (which streams data).

Therefore, the primary contribution of this work is not the discovery that write-heavy
operations are more expensive, but rather the empirical quantification of this cost on a
modern Spark—Delta Lake stack. By providing a precise energy baseline for each CRUD
operation using EcoFloc, this study establishes the necessary foundation for developing and
evaluating future energy-aware optimization strategies tailored to these specific
environments.

On the daily energy consumption of CPU, Update consumed an average of 3.53 J, and Delete
consumed 3.17 J, compared to only 0.45 J for Create and 0.05 J for Read. This means that
Update and Delete required more than seven times the energy of Create and over sixty times
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that of Read. Similarly, RAM results confirm the imbalance that Update consumed 46.14 J
and Delete 30.86 J, while Create used 8.77 J and Read almost none at 0.18 J. Idle remained
negligible on both CPU (0.02 J) and RAM (0.02 J), validating its role as a baseline reference.

When extended to long-term forecasts, the same trend is magnified. For CPU energy, Update
reached 1,288 J per year, and Delete 1,157 J, compared to Create at 164 J and Read at 18 J.
RAM forecasting further emphasizes the memory-intensive nature of Spark workloads, with
Update climbed to 16,841 J per year, Delete to 11,045 J, and Create to 3,201 J, while Read
was limited to 65.70 J and Idle to 7 J.

These results provide strong evidence supporting the hypothesis drawn from earlier studies
[12], [13], [15] that write-heavy operations are the most energy-demanding. The high costs of
Update and Delete can be attributed to data rewriting and consistency enforcement, while the
low costs of Read confirm its efficiency. The moderate values of Create indicate that insert
operations require more resources than reads but remain less demanding than updates or
deletions. The evidence therefore shows that the energy footprint of data lakes is dominated
by write-intensive operations and has the largest impact on long-term sustainability.

Conclusions and Future Work:

In this study, the energy consumption and processing time of Create, Read, Update, Delete,
and Idle operations in a Spark—Delta Lake environment were measured using EcoFloc. Each
operation was executed with a single record, repeated five times, and the averages were taken
for analysis. The results clearly indicate that Update and Delete are the most energy-
intensive, while Read is the most efficient and Create falls in between. Idle contributes almost
no measurable energy, serving as a baseline reference.

The forecasting further emphasizes that write-heavy operations dominate long-term energy
costs. On the CPU, yearly energy usage reaches 1,288 J for Delete and 1,157 J for Update,
compared to only 164 J for Create and 18 J for Read. For RAM, yearly energy climbs to
16,841 J for Update, 11,045 J for Delete, and 3,201 J for Create, while Read remains at just
66 J and Idle at 7 J. These RAM values are derived from a fixed 10-second observation
window for each operation, ensuring comparability across CRUD and Idle.

Overall, the results present a strong foundation to assess the sustainability of the data lake
operations. It verifies that most long-term energy consumption is attributed to write-intensive
operations hence the need to prioritize optimization of such activities in order to achieve a
greener system design. In Future research, this study will be plan to approach bigger data
sets, batch workloads, and multi-node clusters to capture more realistic usage scenarios.
Additional profiling of GPU and storage components will also be explored, as well as the
integration of energy-aware scheduling policies, to provide a more comprehensive
assessment of sustainable data lake management.
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